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Tracer diffusion in a random barrier model: The crossover from static to dynamic disorder

Andrey Milchev,1 Jordan Brankov,2 and Victor D. Pereyra3,*
1Institute for Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

2Institute for Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
3Departamento Fisica and Centro Latinoamericano de Estudios Ilya Prigogine, Universidad Nacional de San Luis, CONICE

Chacabuco y Pedernera, 5700 San Luis, Argentina
~Received 11 September 1997; revised manuscript received 2 June 1998!

In earlier investigations, we have shown that in a frozen-in random barrier environment the diffusive
behavior of a thermally activated tracer particle shows a crossover from anomalous to normal diffusion,
governed by the percolation threshold of the underlying lattice and the degree of randomness of these barriers.
Changes due to a periodic renewal of the environment were not considered. In the present work, we use an
analysis within the framework of the effective medium approximation, and Monte Carlo simulations, to study
the crossover from a ‘‘frozen in’’ static todynamicallyupdated random barrier disorder with changing tem-
peratureT, and find a temperature transition to a qualitatively different type of diffusive behavior of the tracer
particle. It turns out that the Arrhenius relationship of diffusion coefficientD on T is replaced by a linear one
at a crossover temperatureTc , which itself depends on the frequency of environmental renewalv with a
power law:Tc}vd, with d50.2160.02. In the linear regime belowTc , where we find that the tracer move-
ment is highly correlated, the average effective activation energy for diffusion^Ea& is equal to the thermal
energy of the tracer,̂Ea&'kT, while for T.Tc ~Arrhenian regime! the random walks are practically uncor-

related and̂ Ea& is constant, given by the mean value of the barrier heights probability distribution,Ē. These
results are found to be independent of the particular type of probability distribution which is used for the
barrier heights.@S1063-651X~98!07310-3#

PACS number~s!: 05.40.1j, 05.60.1w
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I. INTRODUCTION

Recently in a series of papers@1–4# we studied the diffu-
sion in the presence of randomly distributed static barriers
means of Monte Carlo~MC! computer simulations. A char
acteristic change in behavior from anomalous diffusion w
mean square displacement~MSQD! ^R(t)2&}tg, with g
,1, to normal diffusion̂ R(t)2&}t, was found to occur a
crossover timetc}exp(Eeff /kT), where the effective activa
tion energyEeff was shown to be determined by the perco
tion threshold of the underlying lattice and the dispersion
the probability distribution function~PDF! of the barriers.
An interesting feature in the temperature behavior of the
fusion coefficientD in disordered lattices is the observe
Arrheniandependence on inverse temperature which refle
the compensation of opposite curvature@5# for the cases of
random traps and barriers when these two types of diso
are both present in amorphous solids. A special example
purely ArrhenianD vs T relationship constitutes the squa
lattice @3,6#, where self-duality and symmetric probabilit
densities@7# lead to an effective insensitivity with respect
barrier disorder. For different PDF’s of the barriers and l
tice geometry, deviations from Arrhenian behavior a
clearly manifested@3,6#. In the presense of an external fie
is has recently been shown@4,8# that increasing temperatur
may even systematicallyreducethe MSQD ^R(t)2& in the
random barrier model~RBM!.

*Author to whom correspondence should be addressed. Electr
address: vpereyra@unsl.edu.ar
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In all studies quoted above, the random medium has b
assumed to be frozen, i.e., as a static distribution of rand
barriers over the lattice. In reality, however, the random
vironment may itself be periodically updated while th
walker proceeds in the host matrix.

Indeed, as suggested in Ref.@9#, one may identify self-
diffusion in liquids with the case of dynamic disorder whe
the mean time for the system evolution renewalt ren is com-
parable with the average particle hopping timethop. In cases
whent ren@thop, that is, in cases of static disorder, one de
with a situation when a description in terms of convention
percolation theory should be appropriate@1#. In contrast, for
t ren'thop the tracer cannot explore the energetic landsc
‘‘easy’’ paths, since low barriers are constantly created a
most of the jumps are successful. This problem has b
treated theoretically in a series of works@9–11# which
showed that if the concurrent motion of the host is mode
by random reassignment of hopping probabilities with a c
stant probabilityv per unit time for renewal to occur, th
frequency-dependent diffusion coefficientD(V) with re-
newal is obtainable fromD(V) without renewal through the
formal substitutioniV→ iV1v. In this way, an expression
for the MSQD with renewal in terms of the MSQD withou
renewal can also be derived. Very few models for diffusi
with disorder, however, may be solved analytically, ev
within the framework of the widely used effective mediu
approximation~EMA! @12–15#, down to closed expression
for D(V) without renewal. Therefore, computer simulatio
suggest an efficient approach to learn more about diffus
with dynamic disorder, and are the main tool used in
present investigation.

A gradual transition from static to dynamic disorder c
ic
4299 © 1998 The American Physical Society
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4300 PRE 58MILCHEV, BRANKOV, AND PEREYRA
be accomplished if the barriers are updated periodically w
some frequencyv, and the temperature variation ofD is
studied at eachv within a broad interval. This is in fact the
main objective of the present work. At anyvÞ0 we find
clear evidence for two regimes of diffusive behavior: a hig
temperature~nearly Arrhenian! one, and a low-temperatur
regime, in which the diffusion coefficient is linearly propo
tional to the thermal energykT. Our simulational results
show that this finding holds independently of the particu
probability distribution in the RBM, provided barriers o
zero height may also occur.

In Sec. II we recall the main premises of the model and
treatment within the framework of the EMA~Sec. III!, dem-
onstrating some important limiting cases where simple a
lytical expressions expose the main physics of the expe
diffusive behavior. The crossover to non-Arrhenian diffusi
behavior at low temperature is shown by solving numerica
the characteristic self-consistency equation of the EMA
the case of a square lattice. For hops and simultaneouv
51 environment renewal, a very simple analytical expr
sion is shown to yield perfect agreement with our compu
experiment. In Sec. IV we report our main MC results f
two different PDF’s of energy barriers, and demonstrate th
good agreement with EMA results, irrespective of the p
ticular PDF being used. Eventually, in Sec. V we summar
our observations.

II. MODEL

In the present investigation, as before, the random barr
define transition rates which are governed by Boltzmann
tistics in a standard fashion. Only jumps between adjac
sites are allowed, and the barrier energies~saddle points! are
assigned valuesEi j at random subject to a specific probab
ity distribution function. The transition ratesG i j from site i
to site j are given by the Arrhenius law

G i j 5G0

1

z
exp~2Ei j /kT!, ~1!

wherez denotes the coordination number of the lattice. If t
transition rates are converted into probabilities by dividi
them byG0 , the difference of the sum over all neighbor sit
from 1 gives the probability for the particle to make no jum
whatsoever and remain on spot:

G i i

G0
512 (

j ~Þ i !

G i j

G0
. ~2!

As long as the barriers are not updated, once a forward ju
is made in a particular direction the backward jump~back to
the original position! should carry the same probability as th
forward jump. Within the RBM the barrier heights are di
tributed at random subject to a probability function whi
may represent either a uniform distribution

n~E!5H 1

2sE0
~12s!E0<E<~11s!E0

0 otherwise,

~3!
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whereE is a random number between 0 and 1, the dispers
parameters ranges in the interval 0 and 1 so as to cont
the width of the distribution, or an exponential PDF:

n~E!5
1

E0
expS 2

E

E0
D , ~4!

where there is no additional dispersion parameter. The m
barrier energy is always kept constant at the valueE050.5.

III. EMA ANALYSIS

The EMA for hopping transport of particles was deve
oped by Summerfield@12#, Odagaki and Lax@13#, and Web-
man @14#; for a review, see Ref.@15#. The scheme followed
by the EMA is the following: One starts with the mast
equation for the probabilityP(r i ,t) of finding a particle at
site r i at time t,

d

dt
P~r i ,t !5(

j Þ i
@G j i P~r j ,t !2G i j P~r i ,t !#. ~5!

In the effective medium approximation, the set of sta
jump frequencesG i j is replaced by a single, position
independent, but frequency-dependent, effective jump

quency, G̃ @2#. The Laplace-transformed master equati
then reads

sP̃~r i ,s!2d i ,05G̃~s!(
j Þ i

@^P̃~r j ,s!&2^P̃~r i ,s!&#. ~6!

From the solution of this equation, the Laplace transfo
MSQD is obtained as

^ r̃ 2~s!&5za2G̃~s!/s2, ~7!

wherebya denotes the lattice constant, and cubic lattices
assumed. If the effective transition rate approaches a c
stant value in the limits→0, the resulting MSQD is linear in
time for large times,

^r 2~ t !&→ t→`za2G̃~s→0!t, ~8!

and the asymptotic diffusion coefficient is given byD

5G̃(s→0).

The effective jump frequencyG̃ has to be determined
from aself-consistencycondition, which within the so-called
single-bondEMA is given by, e.g.@15#,

K G2G̃~s!

112@G2G̃~s!#@12sP̃M~0,s!#/@zG̃~s!#
L 50. ~9!

Here ^ & denotes averaging over the probability distributi
of G, the random jump rate of a selected lattice bond; an
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P̃M~0,s!5
1

~2p!dE
2p

p

•••E
2p

p

ddk
1

s1zG̃~s!@12p~k!#
~10!
b
t-
s
b

o

ob

f

:

res-
is the Laplace transform of the initial site occupation pro
ability, where p(k) is the structure function. For neares
neighbor transitions ond-dimensional simple cubic lattice
with a unit lattice constant, the structure function is given

p~k!5
1

d (
i 51

d

coski . ~11!

We shall use the fact thatP̃M(0,s) is simply related to the
lattice Green functionP(n,j),

P~n,j!5
1

~2p!dE
2p

p

•••E
2p

p

ddk
cos~n–k!

12jp~k!
, ~12!

by the equation

P̃M~0,s!5
1

s1zG̃~s!
P@0,j~s!#, ~13!

where

j~s!5F11
s

zG̃~s!
G21

. ~14!

In order to carry out the averaging over the distribution
jump rates in the self-consistency equation@Eq. ~9!#, one first
determines the rate densityr(G) by the transformation

r~G!5n@E~G!#UdE

dGU. ~15!

For the case of a uniform PDF of barrier heights, one
tains, from Eqs.~1!, ~3!, and~15!,

r~G!5H kT

2sE0

1

G
if Gmin<G<Gmax

0 otherwise,

~16!

where, from Eq.~2!,

Gmin5G0expF2
~11s!E0

kT G , Gmax5G0expF2
~12s!E0

kT G .
~17!

By performing the averaging in Eq.~9! with the probabil-
ity density ~16!, one obtains the following explicit form o
the EMA equation:

ln
11g~s!@Gmax2G̃~s!#

11g~s!@Gmin2G̃~s!#
5g~s!G̃~s!ln

Gmax

Gmin
, ~18!

where
-

y

f

-

g~s!5
2

zG̃~s!
@12sP̃M~0,s!#. ~19!

Next, by making use of definitions~17!, and introducing the
reduced mean barrier energye0 ,

e05E0 /kT, Ḡ5G0exp~2e0!, ~20!

we rewrite Eq.~18! in a form more convenient for analysis

G̃~s!

Ḡ
5

sinh$se0@12f~j!#%

sinh@se0f~j!#

f~j!

@12f~j!#
. ~21!

Herej5j(s) is defined in Eq.~14!, and

f„j~s!…[g~s!G̃~s![
2

z
$12@12j~s!#P„0,j~s!…%.

~22!

Note that in the one-dimensional case the above exp
sions significantly simplify, since then

P~0,j!5A12j2, d51 ~23!

and

f„j~s!…512A12j~s!

11j~s!
512A s

s14G̃~s!
, d51.

~24!

A. Limit of vanishing disorder

From Eq.~21! it immediately follows that in the limit of
vanishing disorder,s→0, which impliesx[se0→0, one

obtains the solution for a regular lattice,G̃(s)5Ḡ. The cor-
rections are of the orderO(x2), as follows by expanding the
right-hand side of Eq.~21! in powers ofx,

G̃~s!

G
511

1

6
x2f~j!@122f~j!#1O~x4!, ~25!

setting

G̃~s!/G511b2g2~s!1O~b4!, ~26!

and expandingj5j(s) given by Eq.~14! around

j0~s!5F11
s

zḠ
G21

. ~27!

The latter expansion yields, forf„j(s)… @see Eq.~22!#

f„j~s!…5
2

z
$12@12j0~s!#P„0,j0~s!…%1O~x2!. ~28!
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Thus, for the correction term in Eq.~26!, one obtains

g2~s!5
4

3z2 $12@12j0~s!#P„0,j0~s!…%

3$@12j0~s!#P„0,j0~s!…211z/4%. ~29!

Note that for any positives from definition ~27!, it fol-
lows thatj0(s),1, and one can make use of the analytic
of the lattice Green functionP(n,j) in the unit circle@15#. In
particular, one has the convergent series expansion

P~0,j!5 (
n50

`

Pn~0!jn, uju,1. ~30!

Here

Pn~0!5
1

~2p!dE
2p

p

•••E
2p

p

ddk@p~k!#n ~31!

is the probability that a random walker on the regular latti
starting at the origin, will return to the origin~not necessarily
for the first time! after a walk ofn steps.

If s/G→`, thenj0(s)→0 and since for the simple-cubi
lattices one hasP2k11(0)50, k50,1,2, . . . , Eq.~30! yields

P~0,j!511P2~0!j21O~j4!, j→0. ~32!

Then expression~29! simplifies to

g2~s!5 1
3 G/s1O~G2/s2!, G/s→0 ~33!

for all dimensionalitiesd.

B. High-temperature limit

The high-temperature limit is almost identical to the va
ishing disorder limit. Indeed,e0→0 impliesx5se0→0, and
expansions~25! and ~26! hold true. The only difference is

that now the expression forḠ @see Eq.~20!#, has to be ex-
panded in powers ofe0 . Obviously, this ammounts to ex

panding theḠ-dependent quantityj0(s) aroundḠ5G0 in the
final result Eq.~29! for g2(s). In the leading order of mag
nitude one recovers the results given by Eqs.~29! and ~33!,
with G replaced byG0 .

C. Small s limit „rare renewal…

When s→0, under the assumption thats/G̃(s)→0 as
well, Eq. ~14! implies that j(s)→12. The lattice Green
function P(0,j) then has well known singularities, whic
strongly depend on the dimensionalityd: it diverges like
(12j)21/2 for d51, diverges logarithmically like ln(1
2j)21 for d52, and approaches a finite value for alld>3. In
any case, as it can be seen from Eq.~22!, f„j(s)…→2/z as
s→0. Therefore, the limits→0 on the right-hand side of Eq
~21! exists and, directly yields

G̃~s50!5G
2

z22

sinh@se0~122/z!#

sinh~2se0 /z!
. ~34!

The above result coincides with Eq.~14! in Ref. @3#.
,

-

D. Large s limit „frequent renewal…

As mentioned in Sec. I, the larges limit is involved in
obtaining the diffusion coefficient in a dynamically diso
dered medium with extremely high renewal frequencyv.

Assuming thats/G̃(s)→`, one obtains from Eq.~14! that
j(s)→0. The latter implies the validity of expansion~32! for
the lattice Green function. Then, from Eq.~22!, it immedi-
ately follows that

f~j!5~2/z!j1O~j2!→0, j→0. ~35!

In the limit f(j)→0, the EMA equation~21! reduces to

G̃~s!/Ḡ.sinh~x!/x. ~36!

Hence, by taking into account that

Ḡsinh~x!5~Gmax2Gmin!/2, ~37!

we obtain from Eq.~36! the leading-order result

G̃~s→`!.
Gmax2Gmin

2s

kT

E0
. ~38!

Obviously, in the limit of vanishing disorders→0, Eq.

~38! reproduces the result for a regular lattice,G̃(s→`)

.Ḡ. In the high-temperature limitkT/E0→`, by taking into
account Eq.~17!, one obtains from Eq.~38! the expected

result G̃(s→`).G0 .
It is instructive to study now the low-temperature limit o

Eq. ~38!, when kT/E0→0. The behavior ofG̃(s→`) is
nearly an Arrhenian one, dominated by the exponentially f
decay ofGmax, provideds,1. However, in the cases51,
which is our main concern here, and which corresponds
energy-barrier distribution starting from zero values, one
tains from Eq.~17! that Gmax5G0 and Gmin5G0exp(22e0).
Then the following non-Arrhenian behavior takes place

FIG. 1. Variation of the diffusion coefficient with inverse tem
perature for various update frequencesv derived from the EMA—
Eq. ~21! for the square lattice. A dotted line denotes a purely A
rhenian behavior.
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G̃~s→`!.G0

kT

2sE0
, kT/E0→0. ~39!

This change from Arrhenian to power law~linear! depen-
dence of the diffusion coefficient on temperature at smaT
is demonstrated on Fig. 1 for a square lattice, where Eq.~21!
may be easily solved numerically~see the Appendix!.

Evidently, the crossover from Arrhenian behavior to th
low-temperature regime of diffusion occurs at temperatu
which decrease as the renewal frequency is lowered.
variation of the crossover temperature,Tc , derived from Fig.
1, is shown below along with simulational data.

IV. SIMULATIONAL RESULTS

The MC simulation of the model is carried out in th
usual way@1#. The particle is placed at timet50 in the
middle of the lattice, and a jump is attempted in a random
chosen direction, whereby the corresponding barrier is
signed a value subject to Eqs.~3! and ~4!, and within the
framework of a standard Metropolis procedure the proba
ity to overcome the barrier@Eq. ~1!# is compared to a random
number in order to determine whether the attempt has b
successful or not. Each attempt is considered a Monte C
step~MCS!, and time is measured in MCS’s. All barriers a
updated at intervals ofv21 MCS’s, thus defining a fre-
quencyv with which a renewal of the barrier landscape
the lattice is carried out. During the simulation a number
quantities are recorded, such as the mean square disp
ment ^R2(t)& of the tracer from which the diffusion coeffi
cient D was determined; the correlation factor of the walk
f ,

f 5 lim
N→`

^R2~N!&
N

, ~40!

whereN is the number of steps; the average activation
ergy ^Ea&, etc.

In Fig. 2 we plot the variation of the dimensionless diff
sion coefficientD/D0 with inverse temperature for a numb
of update frequenciesv21. D0 corresponds tokT5`
when the energy landscape surrounding a tracer is effecti
smooth due to its own high thermal energy. Evidently,
quite different probability distributions of the barrier heigh
one observes the same crossover from Arrhenian depend
to a linear dependence ofD/D0 on kT at sufficiently low
temperatures. From Fig. 2 one can see that the only dif
ence between the uniform PDF, cf. Fig. 2~a!, and the expo-
nential PDF@Fig. 2~b!#, comes from the essentially highe
crossover temperature in the case of the exponential P
~note that the average height of the barriers,E050.5, is the
same in both cases!. This crossover depends on the fr
quency of environmental renewalv. Evidently, with grow-
ing v it occurs at higher and higher temperatureTc . For v
50 ~static disorder! the crossover is then expected to ta
place atTc50, and one observes the familiar purely Arrh
nian relationshipD/D0}exp(1/kT). It is also clear from Fig.
2 that the mobility of the tracer grows with increasing fr
quency v. Thus we can distinguish between a hig
temperatureT.Tc ~Arrhenian! and a low-temperatureT
s
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,Tc regime for whichD/D0}kT, Tc depending on the fre-
quency with which the random barriers are updated.

This finding is in perfect quantitative agreement with t
prediction of a simple result which can be derived analy
cally. In the case of complete renewal (v51) the random
walk of the tracer is entirely uncorrelated, and the diffusi
coefficient is given by the averaged transition rate

D/D05E
0

Emax
P~E!exp~2bE!dE, ~41!

which for the uniform PDF yields

D/D05
kT

2E0
F12expS 2

2E0

kT D G . ~42!

while for exponential PDF we have

D/D05
kT

~E01kT!
. ~43!

FIG. 2. Log-log plot of the reduced diffusion coefficientD/D0

vs inverse temperature at different frequenciesv of the random
environment renewal:~a! for the uniform PDF, and according to Eq
~41!—thick line. ~b! For exponential PDF and Eq.~43! ~thick full
line!. The solid line denotes a possible Arrhenian behavior.
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As one may readily verify from Fig. 2~a! @Fig. 2~b!#, Eq.~42!
@Eq. ~43!# practically coincides with our data points in th
whole temperature interval for both uniform and exponen
PDF’s.

It is interesting to find out what features characterize
diffusive behavior in the low-temperature power-law regim
In Fig. 3 we show the measured effective activation ene
^Ea& as a function of the tracer’s thermal energy for the c
of dynamic disorderv51. It is seen that at low temperatur
^Ea&'kT, whereas at higher temperature^Ea&→E0 , with
E050.5 being the mean height of the barriers. Measurem
of ^Ea& vs kT at different frequenciesv ~including v50)
yield curves which are practically indistinguishable fro
those shown in Fig. 3, i.e.,^Ea& depends only on temperatur
~and not onv). Thus in all cases the tracer overcomes b
riers of height which are comparable, on the average, with
thermal energy. In a frozen random medium the low-ene
tracer follows easy paths, spending large periods of time
confinement between high barriers, which is manifested

FIG. 3. Dependence of the measured average activation en
^Ea& on temperature forv51: ~a! for the uniform PDF;~b! for the
exponential PDF. Solid straight lines correspond to^Ea&'kT,
whereas dotted horizontal lines denote the mean value of the
spective PDF’s for the barrier heights. Arrows point to the resp
tive intersection points of the straight lines atkT50.5.
l

e
.
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e

ts

-
ts
y
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s

anomalous diffusion,̂R(t)2&}tg with g,1. After a charac-
teristic timetc , the ‘‘ridges’’ between such low-barrier ba
sins are overcome and diffusion turns to normal for tim
larger thattc . If time is measured in intervals larger thantc ,
the tracer has thus been given sufficient time to overco
successfully the ‘‘ridges’’ separating one valley of low ba
riers from the next, and exploreall barrier heights with an
average height ofE0 .

Conversely, in the case of dynamic disorder the tra
particle at temperatureskT!E0 is aided by a periodic re-
placement of the higher barriers by low ones, thus needin
overcome only those barriers whose height is comparabl
its own thermal energykT, as suggested by Fig. 3. Even
this case the random walks become more and more co
lated within a limited region of low barriers as the therm
energy of the tracer diminishes, and, as Fig. 4 shows,
degree of these correlations is rapidly increased as the d
der renewal slows down.

Independent of the particular PDF of barriers we use,
observe essentially a power-law dependence of the corr
tion factor, f , on v: f }va where the exponenta ~and the
degree of localization! quickly increases with decreasin
temperature. At fixed temperature the degree of correla

gy

e-
-

FIG. 4. Correlation factorf vs update frequencyv at different
temperatures:~a! for the uniform PDF;~b! for the exponential PDF.
Inlets show the variation of the respective exponenta with tem-
perature.
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PRE 58 4305TRACER DIFFUSION IN A RANDOM BARRIER . . .
in the tracer’s movements decreases asv grows, as should
be expected.

The variation of the crossover temperatureTc on v is
shown on Fig. 5 to follow a power-law relationship

kTc}vd, ~44!

with d50.2160.02, provided, as done in this study, one d
fines kTc as the intersection point of the low-temperatu
tangent toD/D0 and the Arrhenius curve exp(E/kT). Evi-
dently, the EMA data on the scaling ofTc with v agree
reasonably well with those of the simulations, bearing
mind the low precision of such graphicalTc determination.

V. CONCLUSION

Summarizing, in the case of a RBM withdynamicdisor-
der, both EMA analysis and MC simulational results for
square lattice suggest the existence of a crossover from
rhenian to linear variation of diffusion coefficient with tem
perature. Following from the treatment of the model with
the EMA, this happens when the probability distribution
barrier heightsincludesa zero barrier, and simulational re
sults show that this behavior does not depend on the par
lar distribution function. Also the temperature of crossov
kTc scales askTc}v0.21, independently of the particula
probability distribution function of the barriers. For a simu
taneous hop and renewal process (v51) a simple analytical
result reproduces perfectly the observed linear relations
D/D0'kT.

FIG. 5. Crossover temperaturekTc vs barrier update frequenc
v for the uniform PDF.
-

r-

f

u-
r

ip

ACKNOWLEDGMENTS

This work was partially supported by the CONICET an
Fundacion Antorchas~Argentina!. The European Economic
Community ~Project No. ITDC-240! is greatly acknowl-
edged for providing valuable equipment. One of us~A.M.!
gratefully acknowledges support by Argentinian Project N
FOMEC 307 during a visit to the University of San Lui
Argentina.

APPENDIX

In the case of a two-dimensional system the funct
f„j(s)… @see Eq.~15!#, which enters into the right-hand sid
of the EMA equation~14!, can be expressed as an explic

function of s and G̃(s) by using the well known representa
tion of P(0,j) @see Eq.~5!# at d52 andn50,

P~0,j!5
2

p
K~j!. ~A1!

HereK(k) the complete elliptic integral of the first kind,

K~k!5E
0

p/2

dx
1

A12k2sin2x
. ~A2!

Equation ~A1! can be derived by using the elementa
identity

x215E
0

`

dt exp~2xt! ~A3!

valid for all x.0, and the integral representation of th
modified Bessel functionI 0 ,

I 0~z!5
1

pE0

p

dk exp~z cosk!. ~A4!

The derivation goes for allj,1 as follows:

P~0,j!5
1

p2E
0

p

dk1E
0

p

dk2

1

12~j/2!~cosk11cosk2!

5E
0

`

dt exp~2t !F 1

pE0

p

dk expS jt

2
coskD G2

5E
0

`

dt exp~2t !F I0S jt

2 D G2

5
2

p
K~j!. ~A5!

Thus, by substituting Eq.~A1! for P(0,j) in the rhs of Eq.
~14! for f„j(s)…, keeping in mind thatj(s) depends on both

s and G̃(s) through Eq.~7!, one finally obtains an explicit

form of EMA equation~14! for the Laplace transformG̃(s).
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