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Tracer diffusion in a random barrier model: The crossover from static to dynamic disorder
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In earlier investigations, we have shown that in a frozen-in random barrier environment the diffusive
behavior of a thermally activated tracer particle shows a crossover from anomalous to normal diffusion,
governed by the percolation threshold of the underlying lattice and the degree of randomness of these barriers.
Changes due to a periodic renewal of the environment were not considered. In the present work, we use an
analysis within the framework of the effective medium approximation, and Monte Carlo simulations, to study
the crossover from a “frozen in” static tdynamicallyupdated random barrier disorder with changing tem-
peratureT, and find a temperature transition to a qualitatively different type of diffusive behavior of the tracer
particle. It turns out that the Arrhenius relationship of diffusion coefficl2ran T is replaced by a linear one
at a crossover temperatuiie, which itself depends on the frequency of environmental renewalith a
power law:T.xw?, with §=0.21+0.02. In the linear regime beloW,, where we find that the tracer move-
ment is highly correlated, the average effective activation energy for diffydigh is equal to the thermal
energy of the traceE,)~kT, while for T>T, (Arrhenian regimgthe random walks are practically uncor-
related and E,) is constant, given by the mean value of the barrier heights probability distrib@icfhese
results are found to be independent of the particular type of probability distribution which is used for the
barrier heights[|S1063-651X%98)07310-3

PACS numbd(s): 05.40:+j, 05.60+w

[. INTRODUCTION In all studies quoted above, the random medium has been
assumed to be frozen, i.e., as a static distribution of random
Recently in a series of papdrs—4] we studied the diffu- barriers over the lattice. In reality, however, the random en-
sion in the presence of randomly distributed static barriers byironment may itself be periodically updated while the
means of Monte CarléMC) computer simulations. A char- Wwalker proceeds in the host matrix.
acteristic change in behavior from anomalous diffusion with _Indeed, as suggested in R¢®], one may identify self-
mean square displacemefSQD) (R(t)?)oct?, with y diffusion in liquids with the case of dynamic disorder when
<1, to normal diffusion(R(t)2)xt, was found to occur at the mean time for the system evolutlon renew,@J] is com-
crossover timer,expEq/KT), where the effective activa- Parable with the average particle hopping timg,. In cases
tion energyE.; was shown to be determined by the percola-When Trer® Thops that is, in cases of static disorder, one deals

tion threshold of the underlying lattice and the dispersion inWlth a situation when a description in terms of conventional

the probability distribution functiolPDPF of the barriers. percolation theory should be appropriaig. In contrast, for

. . . . . Tren™ Thop the tracer cannot explore the energetic landscape
An interesting feature in the temperature behavior of the d'f“easy” paths, since low barriers are constantly created and

fusion coefficientD in disordered lattices is the observed most of the jumps are successful. This problem has been
Arrheniandependence on inverse temperature which reﬂeCtﬁeated theoretically in a series of work§—11 which
the compensation of opposite curvatiieg for the cases of  ghqyed that if the concurrent motion of the host is modeled
random traps and barriers when these two types of disordgjy random reassignment of hopping probabilities with a con-
are both present in amorphous solids. A special example of &ant probabilitye per unit time for renewal to occur, the
pUrE|y ArrhenianD vs T relationShip constitutes the square frequency_dependent diffusion Coefﬁciem(ﬂ) with re-
lattice [3,6], where self-duality and symmetric probability newal is obtainable fror®(£2) without renewal through the
densitied 7] lead to an effective insensitivity with respect to formal substitutiori Q—iQ + . In this way, an expression
barrier disorder. For different PDF’s of the barriers and lat-for the MSQD with renewal in terms of the MSQD without
tice geometry, deviations from Arrhenian behavior arerenewal can also be derived. Very few models for diffusion
clearly manifested3,6]. In the presense of an external field with disorder, however, may be solved analytically, even
is has recently been showW4,8] that increasing temperature within the framework of the widely used effective medium
may even systematicalleducethe MSQD(R(t)?) in the  approximation(EMA) [12—15, down to closed expressions
random barrier mod€lRBM). for D({2) without renewal. Therefore, computer simulations
suggest an efficient approach to learn more about diffusion
with dynamic disorder, and are the main tool used in the
* Author to whom correspondence should be addressed. Electronjgresent investigation.
address: vpereyra@unsl.edu.ar A gradual transition from static to dynamic disorder can
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be accomplished if the barriers are updated periodically wittwhereE is a random number between 0 and 1, the dispersion
some frequencyw, and the temperature variation 6f is  parameters ranges in the interval 0 and 1 so as to control
studied at eacl» within a broad interval. This is in fact the the width of the distribution, or an exponential PDF:

main objective of the present work. At any#0 we find

clear evidence for two regimes of diffusive behavior: a high- 1 E

temperaturgnearly Arrheniap one, and a low-temperature v(E)= E—exr{ — E—) , (4)
regime, in which the diffusion coefficient is linearly propor- 0 0

tional to the thermal energikT. Our simulational results

show that this finding holds independently of the particularwhere there is no additional dispersion parameter. The mean
probability distribution in the RBM, provided barriers of barrier energy is always kept constant at the vadtge=0.5.
zero height may also occur.

In Sec. Il we recall the main premises of the model and its
treatment within the framework of the EM&ec. Il), dem-
onstrating some important limiting cases where simple ana- The EMA for hopping transport of particles was devel-
lytical expressions expose the main physics of the expectedped by Summerfielfi12], Odagaki and Lax13], and Web-
diffusive behavior. The crossover to non-Arrhenian diffusiveman([14]; for a review, see Ref.15]. The scheme followed
behavior at low temperature is shown by solving numericallyby the EMA is the following: One starts with the master
the characteristic self-consistency equation of the EMA forequation for the probability(r; ,t) of finding a particle at
the case of a square lattice. For hops and simultaneous siter; at timet,
=1 environment renewal, a very simple analytical expres-
sion is shown to yield perfect agreement with our computer
experiment. In Sec. IV we report our main MC results for —P(r; ,t)= >, [T}iP(rj,t)—T;;P(r; ,H)]. (5)
two different PDF’s of energy barriers, and demonstrate their dt i#i
good agreement with EMA results, irrespective of the par-
ticular PDF being used. Eventually, in Sec. V we summarize In the effective medium approximation, the set of static
our observations. jump frequencesl’;; is replaced by a single, position-

independent, but frequency-dependent, effective jump fre-

II. MODEL quency,l~" [2]. The Laplace-transformed master equation

. — __then reads
In the present investigation, as before, the random barriers

define transition rates which are governed by Boltzmann sta-

tistics in a standard fashion. Only jumps between adjacent SP(r. s —6 ~=T(s Bir s)h—(P(r: s 6
sites are allowed, and the barrier energsmddle pointsare (11.8) =01, 0= 1 ); [(PCry o) =(P(ri sn]. (6
assigned valueg;; at random subject to a specific probabil-

IIl. EMA ANALYSIS

ity distribution function. The transition ratds; from sitei From the solution of this equation, the Laplace transform
to sitej are given by the Arrhenius law MSQD is obtained as
1 ~ ~
Tyj=To exp—E; /KT), (1) (r¥(s))=zaT(s)/s?, (7)

wherebya denotes the lattice constant, and cubic lattices are
assumed. If the effective transition rate approaches a con-
stant value in the limis— 0, the resulting MSQD is linear in
time for large times,

wherez denotes the coordination number of the lattice. If the
transition rates are converted into probabilities by dividing
them byI', the difference of the sum over all neighbor sites
from 1 gives the probability for the particle to make no jump
whatsoever and remain on spot: B
(r3(t))—_.,za’l'(s—0)t, (8
ey @
Iy iGn o and the asymptotic diffusion coefficient is given Wy
=T (s—0).
As long as the barriers are not updated, once a forward jump The effective jump frequency’ has to be determined
is made in a particular direction the backward jutbpck to  from aself-consistencgondition, which within the so-called
the orlglr_1al p05|t|pm_should carry the same prot_)ab|llty as the single-bondEMA is given by, e.g[15],
forward jump. Within the RBM the barrier heights are dis-

tributed at random subject to a probability function which
may represent either a uniform distribution

< r-T(s) >
= = = =0. (9
1+2[—T'(s)][1—sP"(0,s)]/[zI'(s)]

v(E)={ 20Eq (3)  Here() denotes averaging over the probability distribution
0 otherwise, of I', the random jump rate of a selected lattice bond; and




PRE 58 TRACER DIFFUSION IN A RANDOM BARRIER ... 4301

1
s+zl(s)[1—p(k)]

~ 1 ™ T
PM(O,s):—d(Zﬂ_) f, f, d%k (10)

is the Laplace transform of the initial site occupation prob- 2 -
ability, where p(k) is the structure function. For nearest- g(s)= =—[1-sP"(0,s)]. (19
neighbor transitions oul-dimensional simple cubic lattices zl'(s)

with a unit lattice constant, the structure function is given byNext by making use of definitiond7), and introducing the
reduced mean barrier energy,

(k) . i S8 (17)
=— co; . —
PUO= 4 & 0% €9=Eo/kT, T =T oexp—ep), 20

We shall use the fact thit'\"(o,s) is simply related to the We rewrite Eq.(18) in a form more convenient for analysis:

lattice Green functiorP(n,¢), l~“(s) snoef1- 3T b(6)
_ 0

— = . (21
1 (" ™ 4, c08Nn-k) r sinfoegp(§)]  [1-(&)]
= e d—— 7
Pn= || g (42 o
Here ¢é= &(s) is defined in Eq(14), and
by the equation 5
1 $(E(s)=9(s)I'(5)=_{1-[1-&(s)]P(0,&(s))}.
PM(0,5)= ——=—P[0, , 13
(0.s) st TS [0,4(s)] (13 (22
Note that in the one-dimensional case the above expres-
where sions significantly simplify, since then
-1 _ — 5 _
fe)=| 14 = } . 14 P(0,6)=1-¢%, d=1 (23
zI'(s) and

In order to carry out the averaging over the distribution of 1-&(s) S
jump rates in the self-consistency equati&a. (9)], one first sH)=1-\/—r—=1—/———, d=1.
o 1+&(s) s+4T(s)

determines the rate densipfI") by the transformation 24
24

dE
p(I)= V[E(F)]‘ﬁ" (15) A. Limit of vanishing disorder
From Eq.(21) it immediately follows that in the limit of
vanishing disorderg—0, which impliesx=0e€;—0, one
obtains the solution for a regular IatticE(s)=F. The cor-

For the case of a uniform PDF of barrier heights, one ob
tains, from Eqgs(1), (3), and(15),

KT 1 rections are of the ordéd(x?), as follows by expanding the
p(I)=1 20E, T if Iin<T'<I'max 16 right-hand side of Eq(21) in powers ofx,
0 otherwise, () 1
T =1+ gX°b(O[1-24(H]+0(X), (25
where, from Eq(2),
setting

(1+0’)EO

(1-0)Ee
Fmin=l“0exp{ - T

N FOEX[{ - T
17
By performing the averaging in EQ) with the probabil-

ity density (16), one obtains the following explicit form of
the EMA equation: §o(s)=

T(s)/T =1+ B2y,(s)+0(BY), (26)

and expanding = £(s) given by Eq.(14) around
-1

S
1+ —| . (27)
zI’

|n1+9(3)[rmax_f(s)] =g(s)f”(s)lnrmax, (19  The latter expansion yields, fab(&(s)) [see Eq/(22)]
1+9(8)[I'mn—T ()] Fmin

2
$(£(8))=_{1-[1-&o(S)]P(0,€0(8))} + O(x?). (28

where
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Thus, for the correction term in E¢26), one obtains 10°

4
Y2(8)= 52{1~[1~&(8)1P(0,£0(5))} 10" |

X{[1-£o(s)IP(0,60(s))—1+2/4}. (29

Note that for any positives from definition (27), it fol-
lows thatéy(s)<1, and one can make use of the analyticity
of the lattice Green functioR(n, &) in the unit circlg[15]. In w0 L
particular, one has the convergent series expansion

D/D,

107
P(0,6)= 2 Py(0)¢",  [€]<1. (30)
Here 107 107 10° 11/k61T 10° 10°
1 T T
P,(0)= Wff e f, dk[p(k)]" (31 FIG. 1. Variation of the diffusion coefficient with inverse tem-

perature for various update frequeneesierived from the EMA—
Eq. (21) for the square lattice. A dotted line denotes a purely Ar-

is the probability that a random walker on the regular lattice ., anian behavior.

starting at the origin, will return to the origimot necessarily

for the first timg after a walk ofn steps. D. Large s limit (frequent renewal)
If sS/IT'—o, then&y(s)—0 and since for the simple-cubic i _ . )
lattices one ha®, . 1(0)=0, k=0,1,2..., Eq.(30) yields A_s _mentloneq m_Sec. I, t_he_ Iargiallmlt is myolved in
obtaining the diffusion coefficient in a dynamically disor-
P(0,£)=1+P,(0)£2+0(&%, £—0. (32)  dered medium with extremely high renewal frequenay
. o Assuming thats/T'(s)—, one obtains from Eq(14) that
Then expressiol29) simplifies to £(s)—0. The latter implies the validity of expansi¢d2) for

the lattice Green function. Then, from E®2), it immedi-

va2(s)=3T/s+0O(T'?/s?), T/s—0 (33 ately follows that
for all dimensionalitied. d(&)=(2/2)é+0(£%)—0, ¢—0. (35)
B. High-temperature limit In the limit $(£)— 0, the EMA equatior(21) reduces to
The high-temperature limit is almost identical to the van- - -
ishing disorder limit. Indeeds,— 0 impliesx=o-e,— 0, and I'(s)/T=sinh(x)/x. (36)

expansiong25) and (26) hold true. The only difference is

that now the expression fdr [see Eq.(20)], has to be ex-
panded in powers o&,. Obviously, this ammounts to ex-

panding the"- -dependent quantitgy(s) aroundl’ = I’y in the

final result Eq.(29) for y,(s). In the leading order of mag-
nitude one recovers the results given by E@8) and (33),

with T" replaced byl',.

Hence, by taking into account that

T'sinh(x) = (T max— Tmin)/2, (37

we obtain from Eq(36) the leading-order result

~ I max— T min KT
F(SHOO)ZME__ (38)
C. Small s limit (rare renewal) o 0
When s—0, under the assumption thatT'(s)—0 as Obviously, in the limit of vanishing disordex—0, Eq.

well, Eq. (14) implies that¢(s)—1". The lattice Green (38) reproduces the result for a regular lattide(s—s o)
function P(0,£) then has well known singularities, which ~T. Inthe high-temperature limkT/Eq—s, by taking into
strongly depend on the dimensionality it diverges like account Eq.(17), one obtains from I(E)q(sé) the expected
(1—&) Y2 for d=1, diverges logarithmically like In(1 ~ A

— 9 tfor d=2, and approaches a finite value for@# 3. In ~ "esultl'(s—=)=I'. o
any case, as it can be seen from E2Q), (£(s))— 2/z as Itis instructive to study now the low-temperature limit of
s—0. Therefore, the limis—0 on the right-hand side of Eq. Eq. (38), when kT/E;—0. The behavior ofl (s—x) is

(21) exists and, directly yields nearly an Arrhenian one, dominated by the exponentially fast
. decay ofT" 5, providedo<1. However, in the case=1,
F(s=0)=T 2 sinfoey(1-2/z)] (34 which is our main concern here, and which corresponds to

energy-barrier distribution starting from zero values, one ob-
tains from Eq.(17) that " =g and T ,;n=T gexp(2¢p).
The above result coincides with E(4) in Ref. [3]. Then the following non-Arrhenian behavior takes place

z—2 sinh(20¢€y/2)
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- KT
T(s—)=Tog e KT/Eg—0. (39)

This change from Arrhenian to power laiinean depen- P
dence of the diffusion coefficient on temperature at small
is demonstrated on Fig. 1 for a square lattice, where(E). cw

=1

1
. . 1
may be easily solved numericaligee the Appendix ) co =10
; . . S = 2@ =50
Evidently, the crossover from Arrhenian behavior to this & -4t v o = 256
low-temperature regime of diffusion occurs at temperatures £ o =900
1

which decrease as the renewal frequency is lowered. The * o = 2500
variation of the crossover temperatufe, derived from Fig. 2”:‘:1")'“3
1, is shown below along with simulational data. S 9

IV. SIMULATIONAL RESULTS

The MC simulation of the model is carried out in the 0 1 10
usual way[1]. The particle is placed at time=0 in the kT
middle of the lattice, and a jump is attempted in a randomly 0
chosen direction, whereby the corresponding barrier is as-
signed a value subject to Eq&) and (4), and within the
framework of a standard Metropolis procedure the probabil-
ity to overcome the barridiEq. (1)] is compared to a random
number in order to determine whether the attempt has been
successful or not. Each attempt is considered a Monte Carlo te =1

'
N
T

step(MCS), and time is measured in MCS's. All barriers are & co =10 %Q%
updated at intervals ofv~! MCS’s, thus defining a fre- & o A

. . . Rl [0) =256 AA
guencyw with which a renewal of the barrier landscape on £ -

1
1
1
A =50
1
1
1

. . . . . . oo =900 v A%
the lattice is carried out. During the simulation a number of 4 * o' =2500 %%

guantities are recorded, such as the mean square displace Arrhenius Q%

ment(R?(t)) of the tracer from which the diffusion coeffi- *%Q

cientD was determined; the correlation factor of the walks, *ﬁ%

f! ;ik
*

R2(N % 1 10
f=lim M (40 1KkT
N—o N

FIG. 2. Log-log plot of the reduced diffusion coefficieD{D,
vs inverse temperature at different frequenciesf the random
environment renewala) for the uniform PDF, and according to Eq.
(41)—thick line. (b) For exponential PDF and Eg3) (thick full
line). The solid line denotes a possible Arrhenian behavior.

whereN is the number of steps; the average activation en
ergy (E,), etc.

In Fig. 2 we plot the variation of the dimensionless diffu-
sion coefficienD/D with inverse temperature for a number
of update frequenciess*. Dg corresponds tokT=co <T, regime for whichD/Do>kT, T, depending on the fre-
when the energy landscape surrounding a tracer is EffeCt'VE|é'uency with which the random barriers are updated.
smooth due to its own high thermal energy. Evidently, for

o AR A . ) This finding is in perfect quantitative agreement with the
quite different probability distributions of the barrier heights prediction of a simple result which can be derived analyti-

one observes the same crossover from Arrhenian dependen(ggny In the case of complete renewab€ 1) the random

to a linear dependence @/D, on KT at sufficiently low a1 of the tracer is entirely uncorrelated, and the diffusion
temperatures. From Fig. 2 one can see that the only differ,

ence between the uniform PDF, cf. FigaR and the expo- coefficient is given by the averaged transition rate
nential PDF[Fig. 2(b)], comes from the essentially higher Emax

crossover temperature in the case of the exponential PDF D/Dozf P(E)exp(— BE)dE, (41)
(note that the average height of the barriétg=0.5, is the 0

samein both cases This crossover depends on the fre- yhich for the uniform PDF yields

qguency of environmental renewal. Evidently, with grow-

ing w it occurs at higher and higher temperatire For o k 2E,

=0 (static disorderthe crossover is then expected to take D/ DOZZ_EO 1“”"{ - W) . (42)
place atT.=0, and one observes the familiar purely Arrhe-

nian relationshiD/Dyxexp(1kT). It is also clear from Fig. while for exponential PDF we have
2 that the mobility of the tracer grows with increasing fre-

quency w. Thus we can distinguish between a high-

. D/IDg=7—=. 4
temperatureT>T_. (Arrhenian and a low-temperaturd /Do (Ep+kT) (43
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kT FIG. 4. Correlation factof vs update frequency at different

temperaturesa) for the uniform PDF{b) for the exponential PDF.

FIG. 3. Dependence of the measured average activation ENerG¥iets show the variation of the respective exponenwith tem-
(Ea) on temperature fow=1: (a) for the uniform PDF{b) for the perature

exponential PDF. Solid straight lines correspond (f8,)~kT,
whereas dotted horizontal lines denote the mean value of the rexnomalous diffusion( R(t)2>oct7 with y<1. After a charac-
spective PDF’s for the barrier heights. Arrows point to the respecteristic time ., the “ridges” between such low-barrier ba-
tive intersection points of the straight lineskaf=0.5. sins are overcome and diffusion turns to normal for times
larger thatr; . If time is measured in intervals larger than,

As one may readily verify from Fig.(@) [Fig. 2b)], Eq.(42)  the tracer has thus been given sufficient time to overcome
[Eq. (43)] practically coincides with our data points in the successfully the “ridges” separating one valley of low bar-
whole temperature interval for both uniform and exponentiakiers from the next, and exploml barrier heights with an
PDF’s. average height o, .

It is interesting to find out what features characterize the Conversely, in the case of dynamic disorder the tracer
diffusive behavior in the low-temperature power-law regime.particle at temperaturelsT<E, is aided by a periodic re-
In Fig. 3 we show the measured effective activation energylacement of the higher barriers by low ones, thus needing to
(Eq) as a function of the tracer’s thermal energy for the cas@vercome only those barriers whose height is comparable to
of dynamic disordew=1. It is seen that at low temperature its own thermal energkT, as suggested by Fig. 3. Even in
(Ea)~KT, whereas at higher temperatufE,)—E,, with  this case the random walks become more and more corre-
E(=0.5 being the mean height of the barriers. Measurementiated within a limited region of low barriers as the thermal
of (E,) vs kT at different frequencie® (including w=0)  energy of the tracer diminishes, and, as Fig. 4 shows, the
yield curves which are practically indistinguishable from degree of these correlations is rapidly increased as the disor-
those shown in Fig. 3, i.&(E,) depends only on temperature der renewal slows down.
(and not onw). Thus in all cases the tracer overcomes bar- Independent of the particular PDF of barriers we use, we
riers of height which are comparable, on the average, with it®bserve essentially a power-law dependence of the correla-
thermal energy. In a frozen random medium the low-energyion factor,f, onw: fow® where the exponent (and the
tracer follows easy paths, spending large periods of time imlegree of localization quickly increases with decreasing
confinement between high barriers, which is manifested atemperature. At fixed temperature the degree of correlation
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o7 APPENDIX
o In the case of a two-dimensional system the function
» Uniform PDF; 5=0.20 +/-0.02 $(&(s)) [see Eq(15)], which enters into the right-hand side
o Exponential PDF; 5=0.19 +/- 0.02 of the EMA equation(14), can be expressed as an explicit
o *‘ EMA; 8=°'2‘2 +-003 , ‘ function ofs andT'(s) by using the well known representa-
0 1 10 100 1000 10000 tion of P(0,¢) [see Eq(5)] atd=2 andn=0,

o '[MCS]

FIG. 5. Crossover temperatukd; vs barrier update frequency
w for the uniform PDF.

2
P(0.6)=~K(8). (A

Here (k) the complete elliptic integral of the first kind,

in the tracer's movements decreaseswagrows, as should
be expected.

The variation of the crossover temperaturg on w is
shown on Fig. 5 to follow a power-law relationship

/2 1

k0=, N T (A2
Equation (A1) can be derived by using the elementary
identity
KT.*w?, (44) »
x’lzf dt exp( — xt) (A3)

with §=0.21+0.02, provided, as done in this study, one de- 0

fines kT, as the intersection point of the low-temperature

tangent toD/Dy and the Arrhenius curve explkT). Evi-

dently, the EMA data on the scaling df; with o agree
reasonably well with those of the simulations, bearing in

mind the low precision of such graphic@) determination.

valid for all x>0, and the integral representation of the
modified Bessel functioy,

lo(2)= %Jowdkexp(z coK). (A4)

V. CONCLUSION The derivation goes for af<1 as follows:

Summarizing, in the case of a RBM wittynamicdisor-

der, both EMA analysis and MC simulational results for a
square lattice suggest the existence of a crossover from Ar-
rhenian to linear variation of diffusion coefficient with tem-
perature. Following from the treatment of the model within
the EMA, this happens when the probability distribution of
barrier heightdncludesa zero barrier, and simulational re-
sults show that this behavior does not depend on the particu-
lar distribution function. Also the temperature of crossover

kT, scales askT.xw%? independently of the particular

e e : : : Thus, by substituting EqA1) for P(0,€) in the rhs of Eq.
probability distribution function of the barriers. For a simul- e
taneous hop and renewal proceas=(1) a simple analytical (14) for $(£(s)), keeping in mind tha(s) depends on both
result reproduces perfectly the observed linear relationshig and T'(s) through Eq.(7), one finally obtains an explicit
D/Dgy=~KT. form of EMA equation(14) for the Laplace transforrﬂ(s).

B 1 T k [ k 1
P(0=f)—?fo d 1f0 k21— (&) (co%k, + co%ky)

© 1 (= t 2
:fo dtexp(—t)[;fo dkex;{%cosk)

[ (ft) 2 2
—fo dtexp(—t)| I > —;/C(f) (A5)
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